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Introduction

The Hypervelocity Free-Flight Aerodynamic Facility (HFFAF) and the 16-Inch

Shock Tunnel at NASA Ames Research Center provide invaluable data for verification of

Computational Fluid Dynamics (CFD) codes with finite-rate chemistry and for studies of

hypersonic flight. The HFFAF can duplicate the Reynolds numbers, Mach numbers, and

enthalpies experienced in hypersonic flight in both Earth and Martian atmospheres, and it

has provided information necessary for the design of hypersonic transports and advanced

space transport systems. Two major advantages of the HFFAF are that the freestreams

are clean and the projectiles are in free-flight; hence, there are no sting effects and the

base flows are correct. The 16-Inch Shock Tunnel has been used for both flow field

studies and force measurements on scale models of hypersonic vehicles. It has also been

used for hypersonic propulsion studies.

From January 1, 1989, through December 31, 1993, research conducted under

Cooperative Agreement NCC2-583 has supported these two facilities. The research topics

range from methods for extracting aerodynamic information from ballistic range

shadowgraphs to techniques that enable the one-to-one comparison of experimental images

and CFD solutions. The work performed under this grant has been presented both at

conferences and in publications, and it is summarized in the following sections.

Ballistic Range Data Analysis

The process of extracting aerodynamic coefficients from ballistic range tests

requires multiple steps. First, orthogonal-view shadowgraphs are taken of the model as it

flies down the test section. Recorded in these shadowgraphs are images of the model and

of fiducial lines that are at known locations in the ballistic range. The positions of the
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model images relative to these lines are measured, and these measurements are then

transformed into the range coordinate system. The aerodynamic coefficients are obtained

by fitting calculated trajectories to the range coordinates.

Prior to the work performed under this Cooperative Agreement, the methods used

at NASA Ames Research Center for obtaining the model position from the shadowgraphs

and for fitting a calculated trajectory to the range coordinates had not changed for twenty

years. The position measurements were obtained using a manual method that was

susceptible to user error. The aerodynamic parameter-identification routines did not have

options to concurrently reduce multiple test runs or to allow for nonlinear aerodynamic

coefficients. During the grant period, the film-reading and aerodynamic

parameter-identification capabilities have been upgraded.

The old, manual film-reading system has been replaced with a new,

computer-based system. With this new system, the shadowgraphs are digitized and

displayed using a desk top computer. To improve the accuracy of the readings,

least-squares techniques for measuring the model and fiducial-line locations have been

incorporated into the film-reading software. Tests using the computer-based film-reading

system indicate that the measurements obtained from the digitized shadowgraphs are more

accurate than those obtained with the manual system, and the likelihood of user-induced

error is minimized. The details of this system are described in Refs. 1 and 2.

The old, five-degree-of-freedom parameter-identification code has also been

replaced. In the old parameter-identification code, the equations of motion were

linearized and the aerodynamic coefficients were represented by average values. The

average values were identified for each test run, and nonlinearities were identified by

plotting the average coefficient for each test run versus the root mean square of the angle

of attack for that run. In the new five- and six-degree-of-freedom parameter-identification

codes, the equations of motion are not linearized and the aerodynamic coefficients are

modeled by polynomial functions (other types of functions are also possible). The new



codesarecapableof reducingmultipledatasetsconcurrently;this capabilityis essential

for accurateresolutionof theparametersdefiningthe nonlinearaerodynamiccoefficients.
Thesenewcodesalsousea moreaccurateintegrationscheme(Burlisch-Stoer). The

detailsof thenewparameter-identificationcodesandtheir successfulapplicationsto tests
with sharpandblunt cones,aswell as lifting bodies,aredetailedin Refs. 3-5.

Theaccuracyof theaerodynamiccoefficientsobtainedfrom aeroballisticrange

testshasbeenimprovedby theupgradesin thefilm-readingsystemandthe
parameter-identificationroutines. Thecomputerizedfilm-readingsystemminimizes

user-inducederrors, andin thenewparameter-identificationroutine, theaerodynamic

coefficientsaremoreaccuratelymodeledandmultipledatasetsareusedto identify the
undeterminedparameters.However, theaccuracyof theaerodynamiccoefficientscanbe

compromisedby inadequatemodeling. Severalmethodscanbeusedto specify

mathematicalmodelsfor thecoefficients;theadvantagesanddisadvantagesof these
methodsarediscussedin Ref.6.

Flow Field Analysis

For hypersonic and subsonic vehicles, flow-field structures (such as vortices, shear

layers, and shocks) and the interaction of these structures with the vehicle affect the

vehicle's performance. For example, flow separation and reattachment can affect the

aerodynamics of the vehicle, increase heating in localized regions, and compromise the

efficiency of the propulsion system. In addition, the flow can behave periodically or even

chaotically (as in the case of vortex shedding), and serious control problems can result.

Contained in Refs. 7-9 are discussions of the classifications of flow separation, the

behavior of flow-field parameters near separation and in the resulting vortical flow, and

the types of mathematical models that describe the time dependency of separated flows.
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Constructed Images

For decades, experimental interferograms, schlieren, and shadowgraphs have been

used for qualitative and quantitative studies of flow-field structures such as shocks, shear

layers, and vortices. These experimental images are created by passing light through the

flow field, and the recorded intensity patterns are functions of the phase shift and angular

deflection of the light. In infinite- and finite-fringe interferograms, the recorded

intensity patterns (fringes) are caused by phase shifts (optical pathlength differences).

These phase shifts result from variations in the flow-field density and are proportional to

path integrals of the refractive index. The path of integration is the path that the light

follows through the flow field.

For two-dimensional and axisymmetric flow fields, point information can be

extracted from interferograms and compared to computational results. The first step in

extracting this information is to calculate the phase shifts from the interferogram's fringe

patterns. These phase shifts can be obtained from either infinite- or finite-fringe

interferograms. However, in flow-field regions where there are only small changes in the

density and, hence, fractions of fringe shifts, calculating the phase shifts from finite-fringe

interferograms will give more accurate results. A technique for extracting phase-shift

information from finite-fringe interferograms is described in Refs. 10 and 11.

In schlieren and shadowgraphs, the intensity patterns (dark and light regions) are

governed by the angular deflection of the light as it passes through the flow field. The

angular deflection is proportional to the path integral of the refractive-index gradient.

Flow-field features which have large refractive-index (density) gradients, such as shocks,

shear layers, and expansion fans, are recorded in these images.

Both schlieren and shadowgraphs are used for flow-visualization studies and for

locating flow-field structures. Schlieren contain sharp details of the flow-field structures

as well as information concerning the direction of the light when it exits the flow.
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Shadowgraphs also contain details of the flow field. However, they contain no information

as to the direction of the light and are generally less sharp than schlieren. When these

images are compared to computed flow fields, contour plots for only one plane of data

(usually the symmetry plane) are typically used. The choice of contour levels can mask

some of the features observed in the experimental images. In addition, if the flow is three

dimensional or the model is free to roll, no single computational plane provides all the

information necessary for realistic comparisons to experimental images.

During the grant period, software has been developed that constructs

interferograms, schlieren, and shadowgraphs from CFD solutions. To minimize CPU

time, the path that the light follows through the disturbed region of flow is assumed to not

significantly deviate from a straight line path. Functions that describe the phase change

and angular deflection are integrated along this line. The intensity patterns observed in

interferograms, schlieren, and shadowgraphs are then related to these integrals. The

algorithms used to construct these images are discussed in Refs. 11-12. Applications of

these algorithms to a variety of flows are described in Refs. 11-13.
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